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NOMENCLATURE

scale factor for length, v/in.

a

b scale factor for temperature, v/°F

k thermal conductivity, Btu/(hr)(in.)(°F)

q" time rate of internal heat generation, Btu/(hr)(in.3)
it radius, in.

t temperature, °F

Apt area normal to heat flux, in.z/in.

Acg cross-sectional area normal to current flow
1z, voltage gradient, v/'m.

14 : linear length, in.

v volume of tube wall, in.3/in.

Greek Letters

a temperature coefficient of electrical resistivity, (pohm)(in.)/°F

Y temperature coefficient of thermal conductivity, Btu/(hr)(in.)(°Fz)
o) electrical resistivity, (Lohm)(in.)

T machine variable representing time

Subscripts

0 evaluated at 0°F

1 inside radius

2 outside radius

i indicates temperature dependence

Superscripts

i indicates machine variable

iv
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ANALOG COMPUTATION OF TEMPERATURE DISTRIBUTION
IN SOLIDS WITH ELECTRICAL HEAT-GENERATION
AND TEMPERATURE-DEPENDENT PROPERTIES

by

Darrel G. Harden and Lawrence T. Bryant

ABSTRACT

A problem which frequently arises in experimental
heat transfer work is that of determining the surface tem-
perature of a tube in which heat is generated electrically.
Solution of this problem involves a temperature measure-
ment of the opposite surface to which a correction factor,
the temperature drop through the tube wall, must be applied.
This temperature drop is obtained through the solution of
the differential equation governing the temperature distribu-
tion in the tube wall; however, in the case of temperature-
dependent properties of thermal conductivity and electrical
resistivity, the governing equation is nonlinear, which
necessitates special solutions.

In this study a hypothetical surface-temperature
problem is established, and the solution of the governingnon-
linear differential equation is accomplished by means of an
electronic analog computer. Assuming variable properties,
the example used in this study is that of a one-dimensional
steady-state heat flow throughboth a thick- and a thin-walled
tube.

1. INTRODUC T TION

A problem which frequently arises in experimental heat transfer
work is that of determining the surface temperature of a tube in which
heat is generated electrically. Solution of this problem involves a tem-
perature measurement of the opposite surface to which a correction
factor, the temperature drop through the tube wall, must be applied. This
temperature drop is obtained through the solution of the differential equa-
tion governing the temperature distribution in the tube wall; however, in
the case of temperature-dependent properties of thermal conductivity and
electrical resistivity, the governing equation is nonlinear, which neces-
sitates special solutions.
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Takob(1) presented an analytical solution for the case of a solid
cylinder in which the thermal conductivity is independent of temperature
and the electrical resistivity a linear function of temperature.

Kreith and Summerfield(2) utilized a series solution, assuming
that the thermal conductivity and electrical resistivity were linear func-
tions of temperature, from which was obtained the overall temperature
change across a tube wall as a function of an infinite series in ascending
powers of wall thickness.

Dickinson and Welch(3) in an application of the Kreith-Summerfield
solution to a thick-walled tube found it necessary to compute additional
terms to assure convergence of the series solution.

Clark(4) simplified the Kreith-Summerfield solution by showing
that the series solution could be written as the sum of two functions, the
first being a geometric function (solution for constant properties) and the
second a function which accounted for variations of thermal properties.
The utility of this approach is that the influence of variation of the thermal
property on the temperature drop through the solid can be computed quite
easily; however, in the series solution, the uncertainties concerning con-
vergence of the series, when temperature dependence is important, is still
in question.

Stein and Gutstein(5) approached the solution of the differential
equation by introducing a parameter which gives the effect of the influence
of the temperature dependence of electrical conductivity on the tempera-
ture and heat-flux distributions through the solid. They then determined
the percentage error in the calculated temperature drop which would result
from neglecting the temperature dependence of electrical conductivity as
a function of the parameter. The generalization was made that, if the tem-
perature drop is computed from the surface heat flux and if the tempera-
ture dependence of electrical conductivity is neglected, the resulting error
in the temperature drop will be less than 5%, even though the electrical
conductivity may change by 25%. For most metals, a change in electrical
conductivity of this magnitude requires temperature changes of the order
of hundreds of degrees. It was concluded that only in unusual cases would
it be necessary to account for the temperature dependence of electrical
conductivity. For the unusual case, an incremental procedure for calcu-
lating the temperature distribution was presented, which is based on
exact integrations of the heat-conduction equation over small increments
of solid thicknesses in which it is assumed that the temperature dependence
of electrical conductivity is negligible.

More recently, the series solution(4) was reviewed by Bergles and
Rohsenow.(é) They discuss the use of a guard heater to insure an adiabatic
outer surface. The results from the series solution presented show a
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larger temperature drop for higher surface temperature. It appears that
these results do not agree with previously published results or with the
results of this study.

Analog Computer Solutions

The solution of the nonlinear differential equation by the use of an
analog computer eliminates the uncertainties concerning convergence of
a series solution. With the use of the analog computer, the approximations
made in the Stein-Gutstein(5) incremental method would not be necessary.
Moreover, the effect of a nonadiabatic boundary condition can be studied
quite easily with the analog, since this is one of the initial conditions of
the problem.

II. EQUATION DEVELOPMENT

The flow of heat in a hollow cylinder (Fig. 1), long enough so that
end heat losses can be considered negligible, is one dimensional. In Fig. 1
the heat flux entering the shaded volume element dV is - ktA(dt/dr); the
heat generation in the volume is @"dV; and the rate of heat transfer at
Tt dris

Cra)s 2 (nnst) e

BOUNDARY CONDITIONS

dt
dr e F ety
r=r
2
dt o %
P =0 t-tl
r=r

Fig. 1. Cross Section of Heater Tube
with Boundary Conditions

The energy balance becomes

dt : dt ) dt
(—- ktA E) 7 et dr = <— ktA E;) + = (- kA '&) dr & (1)
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In Eq. (1) substituting A = 27r per unit length and dropping the partial
derivative notation, since t is a function of r only, one obtains

l d dt
el i =
r dr (ktr dr ) 4 q 0 : (2)

Performing the indicated differentiation, Eq. (2) becomes

1 d?t dt dt) /dkt
— | — e = Wi qm =
T |t <drz) T (dr) e <dr><dr E qt' L g (3)

At this point it is necessary to specify the relationship between k
and t. If a linear variation of the form

lepu=alc [l eyt ] (4)

is specified, then

dkt dkt) (dt dt
() e () b

Substituting Eq. (5) into Eq. (3) gives
2 d koY /at\? L)
at + l ahy +__9.. e +_q- =0 5 (6)
Gl ke k¢ \dr ky

This is the equation describing the temperature distribution when
k¢ is a linear function of temperature. When the internal heat generation
is by means of resistance heating, the volumetric heat generation is given
by

2

g = EEV (3.413) Btu/(watt)(hr) (7)
where
R = pL/Acs

If the electrical resistivity p is a linear function of t, for example

p = poll +at]

then substituting for pin Eq. (7) and for g" in Eq. (6) results in

fdzr dt y i\ F2(3.413)
+ = — . .
a2 (dr) S Yt) <dr> + [Po(1 + at)L/AcsIVke(1 + Vt) i (8)
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Since

and

L unit length :

Eq. (8) can be reduced to

d?t SRl B dt\? A E%(3.413) o 9)
&2 \dr (OUETe) NG Po(l + at)ke(1l + Yt) §
If k and P are considered constant and evaluated at some reference
temperature, then Eq. (2) can be written as

d®t 1 (dt\ E?*(3.413)
<i—r'f+?<?1?> ok = [ (10)

III. ANALOG EQUATION TRANSFORMATION

The transformation of Eqs. (9) and (10) into a form suitable for
analog representation is made by the following substitutions:

= SRR e 0 =R ey
Thus,

B

dr d(r'/a) b \dT'
and

B e (ayd
ez Al )| Bt B \dTA

Making the substitution into Egs. (9) and (10) and multiplying by b/a?, one

obtains
SECENN Al b shat T E?(3.413) i
ozt \am) T o/ k \ar) T2\l + @t /b) k1 +(Ve'/b)]/

(11)

gt .l fa b (E%*3.413)
ETF'_Z+T'<dT') +?<T =0 . (12)

and
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(e ohms)(in)

RESISTIVITY (p),

To assign the scale factors it is necessary to determine the maxi-

mum ranges of the variables. The maximum temperature expected is
600°F. The maximum tube size is 0.50 in. radius. Then,

and

o,
—
(=}
—
1

bt(0); 100 v = b(600°F); b = 1/10v/F

Gl ()R (0] 100 v = a(0.50 in.); a = 1 x 10? v/in.

Introducing these values of a and b into Eqs. (11) and (12) and introducing
values(3) of electrical resistivity and thermal conductivity from Fig. 2,

and

2t (e (05 0051 ) dt'\?
S T (1 + 0.00517¢t") \ar'

gl E2(3.413) (13)
105 | Po(1 + 0.0062t")ko(1 + 0.00517t")
@ - IR T E?%(3.413) (14)
e T T Pk

The analog circuit diagrams for Eqgs. (13) and (14) are shown in Figs. 3
and 4. The potentiometer settings for these figures are listed in Tables 1
and 2.

38

36

3y

32

30

26

(1+0.00062T)

- 1.0

- 27.18
b — 13.0

— 12.0

Fig. 2

Thermal Conductivity and Electrical
Resistivity Versus Temperature for
Type 304 Stainless Steel

K = 8.50
(140.000517T ) ]

THERMAL CONDUCTIVITY (K), Btu/(hr)(ft)z (°F/ft)

el Ll ! | s

300 500 700 900
TEMPERATURE, °F
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+100

-100

D -(dt/dr)

-100 -

100

+100(dt/dr)

NOTE:

SEE TABLE | FOR
POTENTIOMETER SETTINGS

-[dt/dr
r

L

L

Bighiss

-100

Analog Diagra

+60V ___,\M/\—___l [_f

TO HOLD RELAY
N

500Q
10w 0-—& o O—
- A+ IN REL| g 0
O==a—0 o ? Oo—
Sp
F
-100

AR

LEGEND

INTEGRATION

HIGH GAIN AMPLIFIER

SUMMER AND INVERSION

CONSTANT COEFFICIENT
MULTIPLIER

SERVO MULTIPLICATION

SERVO DIVISION

INTERCONNECTOR

HIGH SPEED DIFFERENTIAL
RELAY FOR AUTOMATIC
HOLD OPERATION

m of Solution for Case of Constant Thermal and Electrical Conductivity
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-100 -100

x 10

:| > ~(dt/dr)

m

/7 tat/an)? o

Al

L 100 2
\I-A/ - [(llm + .362()(dllur)]
_(o5)
5 H
N -0 2
(55 7057 -[ .362/70 + .362¢)(at/dr)

70.00 -70.00 NOTE: |. SEE LEGEND ON FIG. 3

+ IOO( ) E ® 2. SEE TABLE 2 FOR
POTENTIOMETER SETTINGS

70a/b ¢ (70 + (70arn)t] [70 + (zOyiv1d
£ X 10
/
& - PARAMETER
+ wo@ N ° 170 + -362¢) (70 + .u3ut)
{26}
26 c
) ©
TO HOLD RELAY
+ 100 I> —5) 5000 (e,
10w oy o
-100 S INREL | 4
3 P
G
-(dt/dr)
a3 L 15 + [(I/r)(dt/dr)] -

\_,/—% © -100

Fig. 4. Analog Diagram of Solution for Case of Temperature Dependent Thermal and Electrical Conductivity
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Table 1

POTENTIOMETER SETTINGS

(see Fig. 3)
Potentiometer No.
Mathematical Value Value Setting Parameters
Figa 3 Machine
1 i tyor t, B ==bts t =1000
2 2 outside radius -5000 b = 0.1 v/°F
3 g inside radius 4650 -4650
5 5 (3.413/pk)E2(b/a?) parameter
21 21 1/100 0.01 0100
22 22 1/100 0.01 0100
Table 2
POTENTIOMETER SETTINGS
(see Fig. 4)
Potentiometer No.
Mathematical Value Value Setting Parameters
g Machine
1 t, or t, = 600 -6000 | b = 0.1
= 300 -3000
2 +7000
4 r, -5000
3 T -4650
i b |:70x70x3.413 EZ:l
o (pk)o x 10-°
0 tyort,
34 70 7/b 0.362 3620 Y = 0.000517
22 70 o/b 0.434 4340 o = 0.00062
35 70 Y/b 0.362 3620
24 0.01 0.01 0100
33 0.01 0.01 0100
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IV. DISCUSSION OF RESULTS

The results of the computer solutions for the cases of heat flux
through the inner and outer surfaces of both thick- and thin-walled 1-in.-OD
tubing are shown in Figs. 5 and 6. Figure 5 shows that the effect of vari-
able properties on the thin-walled tube studied does not become important
until the temperature drop through the tube wall reaches or exceeds ap-
proximately 70°F. Comparison of the curves of Fig. 5 indicates that the
higher the initial wall temperature, the lower the temperature drop
through the wall. Figure 6 shows the results for the thick-walled tube.

It should be noted that the effect of initial surface temperature has a much
greater effect on the temperature drop for the thick-walled tube than for
the thin-walled tube. Figure 6 (for t, = 300°F) also shows that an adiabatic
inside or outside tube wall has only a negligible effect on the temperature
drop across the tube wall.

In applying the series solution to this problem, Clark(4) showed
that, when the variation of properties could be neglected, the temperature
drop was a linear function of the heat flux. This is shown in Figs. 5 and 6
along with the variable-property solution. It is evident from examining
Figs. 5 and 6 that the effect of variation of the thermal property becomes
more pronounced in the thick-walled tube with the attendant greater tem-
perature drop.

V. CONCLUSIONS

This study has shown the analog solution of the temperature dis-
tribution in an electrically heated tube to be flexible in its application. The
question of convergence in the series solution is not encountered with the
analog solution. By means of the analog solution the boundary conditions
at the two surfaces can be changed quite easily and, in particular, the in-
fluence of a nonadiabatic boundary can be investigated.

When the assumption of constant properties can be made, it is
recommended that Clark's(4) constant-property solution be used to calcu-
late the temperature drop at one heat flux. Then, since the temperature
drop is a linear function of the heat flux, all other temperatures can be
read from a plot of the temperature drop versus the heat flux.
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TEMPERATURE DROP (At), °F

220

200

180

160

140

120

100

80

60

40

20

t, = 300°F A t, = B00°F
(n ) I 5=
VARIABLE PROPERTY wl L 4
CASE
(2)
(2) = = (n CONSTANT d
CONSTANT | I vmuatis:nonnrv PRgPERTY £
PROPERTY CASE ASE
: -6 =] = —
Q" x 10 (1) (2) 3 -6
| | E_|a"x 10 () () 1|
0.1 | 0.0055 D78 078!

0.2 | 0.0221 3.0 60| ==] [ 0.1 0.00u8 0.5 0.9 |

0.3 | 0.0u97 6.0 0.2 | 0.1910 2.2 2.5
0.4 | 0.088Y4 122 | 127 | = 0.3 | 0.0u3 5.3 5.8 | |

0.5 | 0.1378 19.3 | 10.8 0.4 | 0.0764 9.4 | 10.0
0.6 | 0.1990 28.0 | 28.6 | = 0.5 0.1195 4.7 15.1 |—

0.7 | 0.2710 38.2 | 38.3 | | i 0.6 | 0.1720 gic8 | BlL.D
0.8 | 0.3530 50.1 | 50.3 0.7 0.234 20.1 | 28.9|

0.9 | 0.4u70 63.7 | 63.3 || 4 0.8 | 0.3055 38.0 | 37.7
1.0 | 0.5520 79.0 | 78.0 0.9 0.386 48.3 | u8.7 ||
1.2 | 0.7950 14,7 {112.3 | = 1.0 | 0.477 59.8 | 59.8 | |

1.4 | 1.082 158.0 [152.8 1.2| 0.688 87.1 | 85.8
1.6 1.412 209.7 [200.0 | = 1.4 0.935 119.5 | 116.3 | ]

1.8 1.222 167.6 | 151.9

| N o O e [ o P | e P | ] s s [
2 y 6 8 10 12 R’} 16 0 2 U 6 10 12 1n 16

HEAT FLUX x |o'5, Btu/ (hr) (£1)2

Iy, B Comparison of the Temperature Drop across a Thin-walled Tube for the

Constant and Variable Property Cases at t = t, of 300°F and 600°F
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the Constant and Variable Property Cases at t = t; of 300°F and 600°F

I 1 l T l T I T l T T T l T I T | T l I T
= ; PR 5| [ [ o——— &=
" amx 1070 () | (@)
Lap ot dre e reen R RO R L v, = 800°F o
0.1| 0.0171 | uw.5( 5.7
l— lo.1 | 0.0171 | 5.9] 5.4]| 7.5 — — |o.2| o.0e86 | 18.8 | 23.0 —
0.15| 0.386 16.9 0.3| o0.I15u2 | u2.8 | 51.7
— lo.20| o0.0686 | 2u.6 | 2u.1 | 30.1 = — |o.u| o.27u | 77.0 | 9.6 =
| |o.25| o.107 u7.0 = 0.5| 0.u28 |[122.0 |143.5 e
0.30| 0.1542 | 56.4 | 55.8 | 67.7 [ |o.6| 0.617 |[178.8 [207.0
| |o.35| o0.210 92.3 2] | |o0.7| o0.su0 |2us.0 |282.0 4
0.40| 0.274 |102.1 |101.1 |120.2 0.8 331.3 | 368.0
L lo.50 | o.u28 |[162.5 | 161.2 | 188.0 — — =
0.60| 0.617 |240.6 |238.6 |271.0
~ [o.70| o.su0 |337.8 369.0 3 I ‘
[ =) o (2) 55|
(2) CONSTANT
L CONSTANT A C PROPERTY |
PROPERTY CASE
= CASE — i
I (n i
VARIABLE PROPERTY () 3
- CASE FOR BOTH =] VARI ABLE —
L = O | PROPERTY
CASE FOR 3l
[ 2| (5= o
I O A e ! ! | [N
1.0 2.0 3.0 W0 5.0 6.0 7.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
HEAT FLUX x |o'5, Btu/(hr) (£1)2
Fig. 6. Comparison of the Temperature Drop across a Thick-walled Tube for
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